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Abstract

A clear understanding of the monetary value that customers place on reliability and the factors
that give rise to higher and lower values is an essential tool in determining investment in the grid.
The recent National Transmission Grid Study recognizes the need for this information as one of
growing importance for both public and private decision makers. In response, the U.S.
Department of Energy has undertaken this study, as a first step toward addressing the current
absence of consistent data needed to support better estimates of the economic value of electricity
reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002
representing residential and commercial/industrial (small, medium and large) customer groups,
were chosen for analysis. The studies cover virtually all of the Southeast, most of the western
United States, including California, rural Washington and Oregon, and the Midwest south and
east of Chicago. All variables were standardized to a consistent metric and dollar amounts were
adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each
outage scenario (e.g., the loss of electric service for one hour on a weekday summer afternoon) is
treated as an independent case or record both to permit comparisons between outage
characteristics and to increase the statistical power of analysis results.

Unadjusted average outage costs and Tobit models that estimate customer damage functions are
presented. The customer damage functions express customer outage costs for a given outage
scenario and customer class as a function of location, time of day, consumption, and business
type. One can use the damage functions to calculate outage costs for specific customer types.
For example, using the customer damage functions, the cost experienced by an “average”
customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3
for a residential customer, $1,200 for small-medium commercial and industrial customer, and
$82,000 for large commercial and industrial customer. Future work to improve the quality and
coverage of information on the value of electricity reliability to customers is described.
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Executive Summary

Ensuring reliability has and will continue to be a priority for electricity industry restructuring.
Indeed, the recent blackout in the Northeast highlights the significant public and private interest
in electricity reliability. A key aspect of having electricity available on-demand, whether it is to
individual households or large industrial complexes, is the fact that outages — brief or extended —
interrupt essential as well as discretionary use of appliances, motors, electronics and other
devices for which electricity is the primary, if not the only, source of energy.

Ensuring reliability, however, is a complex and multi-faceted problem that necessarily involves
actions taken by both public and private decision makers. Strategies to provide reliable service
are numerous, and some carry hefty price tags. Overbuilding the entire electricity delivery
system to reach a standard of reliability that costs more than consumers are willing to pay or
under-building the system that leads to more outages than customers are willing to bear are both
sub-optimal strategies. It is, therefore, important to understand what reliability costs consumers
as well as how much they are willing to pay for reliability, so that appropriate public and private
investments and operating decisions can be undertaken.

Over the last 20 years, there have been numerous efforts to quantify the value of reliability as a
basis for both public policy and private investment and operating decisions. These efforts,
undertaken primarily by electric utilities seeking to better understand the value of electric service
(VOS) by conducting customer interruption or outage cost studies, are expensive. Consequently,
only a few studies have been conducted and, individually, they are of limited usefulness for
understanding the value of reliability for consumers in other regions or under different outage
scenarios. The solution taken by this study is to combine findings from available outage studies
into a meta-dataset and extract findings that increase the availability and applicability of findings
beyond the scope of the original studies. Merging findings from individual studies and
extrapolating to develop new finding in this manner is facilitated by the fact that the data were
originally collected using a common methodology, which is documented in Sullivan and Keane’s
(1995) Outage Cost Estimation.

Methodology

The process to acquire, standardize, and merge the various datasets was straightforward. Ten of
the twelve companies that had conducted VOS studies during the past two decades were
contacted. Eight agreed to participate. Data files, questionnaires and codebooks were obtained;
the data were then standardized and merged together. Dollar values were standardized by
adjusting them to 2002 dollars using the Consumer Price Index. Altogether, 24 independent
datasets were merged into three meta-datasets: one each for data collected from large
commercial and industrial (C&I), small-medium C&aI, and residential customers. These studies
comprised 13 years of experience, using a variety of outage scenarios, and covering large
portions of the United States (but not including the Northeast or much of the north-central
Midwest). Each dataset included the key dependent variables of outage cost per event for the
C&lI customers, and willingness to pay measures per event for the residential data. Other
explanatory factors, such as SIC code, firm size, and type of housing, were also included.
Statistical power was enhanced by organizing the data such that each scenario in a survey was
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treated as a single record: If, for example, one respondent provided input about 3 different
outage cost scenarios, the final data set included 3 records for this respondent instead of one.

Results

Results were developed in two basic formats: (1) summary (bivariate analysis) tables for
various scenario factors and customer characteristics for an outage of one hour, and (2) customer
damage functions using multiple regression (Tobit) models for estimating outage costs while
controlling for all factors simultaneously. The Tobit models predict that the average cost
experienced by an “average” customer for a single summer afternoon outage of one hour is
approximately $3 for residential, $1,200 for small-medium commercial and industrial, and
$82,000 for large commercial and industrial. The outage costs increase substantially, but not
linearly, as the outage duration increases from one to eight hours. Outage costs are generally
higher in the winter than in the summer for an outage of a given duration or time of day. The
Tobit models also reveal important differences in outage costs across regions, time of day,
customer size, and business type.

Use of the data is subject to important caveats. The most important of these is collinearity,
which means that the findings are inextricably linked to aspects of the original studies from
which they were derived and that, therefore, the extrapolations cannot be fully supported on
statistical grounds. In addition, as noted earlier, data on the Northeast and some areas of the
Midwest were not available for inclusion in this initial study. Finally, the original studies were
not identical in every respect; all variables were not collected consistently by each study.

Conclusions and Recommendations

The principal contribution of this project has been the development of statistical models that can
be used to estimate outage costs for large C&I, small-medium C&aI, and residential customers.
These models can be applied to estimate outage costs for representative customers in different
geographic regions for a variety of outage scenarios. Utility planners, for example, can use the
results to estimate outage costs for particular customer classes (or mixes of customer in different
classes) representative of their service territory’s customer base. They can, thereby, improve
generation, transmission and distribution planning processes compared to processes that do not
consider the economic value of reliability to consumers.

This study is an initial effort to improve the public availability of information on the economic
value of reliability. More work is needed to improve the quality and coverage of this critically
important information. In particular, to address some of the limitations in the current data, we
recommend the following:

1. Encourage all U.S. utilities that have conducted surveys on the economic costs of outages to
their customers to contribute these data and thereby enhance the coverage and usefulness of
these data on a national scale

2. Support future utility efforts to collect additional information on the value of electricity
reliability toward ensuring that ultimately these data also contribute to improving the
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availability of this type of information on a national basis (e.g., use consistent methodology
for survey design and sampling).

3. Where necessary, in order to address existing gaps in available data, lead efforts to conduct
additional surveys on topics of high priority (e.g., collect new data in areas of the country or
on other reliability issues not currently well-represented in existing data collection efforts or
on other reliability topics.

viii






1. Introduction

Ensuring reliability has and will continue to be a priority for electricity industry restructuring.
Reliable electric power delivered on demand is a cornerstone of electricity’s ubiquitous adoption
and use. A central feature in electricity’s value to consumers, whether they are individual
households or large industrial complexes, is the infrequent occurrence of outages or other power
disturbances that interrupt the use of appliances, motors, electronics, or any of the other myriad
of end uses for which electricity is the primary energy source.

While no one disagrees that customers seek reliable power, ensuring reliability is a complex and
multi-faceted problem. The strategies available to meet that goal are numerous and the price tags
associated with them vary greatly. Most important of all, reliability has always been a shared
responsibility because it is a public good. Therefore, who pays and who benefits from increased
reliability has always been an important question for both private and public decision makers.
The recent August 14 blackout in the Northeast - the largest blackout in U.S. history - has
punctuated the importance of and at the same time difficulty in determining the best strategy or
combination of strategies.

Underlying any strategy is assumptions about the value end-use customers place on reliability.
During times of crisis caused by either short-term events like the recent massive outage in the
Northeast or the rolling blackouts in California in 2001, a common (yet, we believe
inappropriate) assumption is that customers will pay almost any price for reliable power. In
contrast, during periods of reliable power delivery but accompanied by rising rates or rising
taxes, there are frequent charges that the system is being overbuilt and designed to a higher
standard of reliability than customers are willing to pay.

A general framework for addressing this planning problem has been the application of value-
based planning (Vojdani, et al., 1995; Dalton, et al., 1995). Value-based planning is designed to
match the level of investment in reliability with the economic value of the improvement in
reliability. The use of value-based planning requires a method for estimating customers’ value
of service reliability. Historically, generation, transmission, and distribution systems
investments have been planned using arbitrarily defined engineering criteria. With value-based
planning, it is assumed that customer preferences for service reliability can be measured and that
these preferences can be used to establish economically justified reliability targets for generation,
transmission, and distribution investments.

In the application of value-based planning, the value of service reliability to customers has been
conceptualized as equal to the economic losses that customers would experience if a given
outage occurred. The economic losses experienced by customers as a result of reliability or
power quality problems can be described by a Customer Damage Function (CDF)*. The general
form of a CDF is:

Loss = f{outage attributes, customer characteristics, geographical attributes}.

! For a discussion of the application of such functions to electric power supply reliability planning see “Prediction of
Customer Load Point Service Reliability Worth Estimates in an Electric Power System,” L.Goel and R. Billinton,
1994, |IEEE Proc.-Generation, Transmission, Distribution, Vol.141, No. 4, July 1994.



The dependent variable of economic loss is expressed as a loss in dollars per event, per kwh of
un-served energy, per kWh of annual energy consumption or per kW of annual peak demand.
The equation predicts the economic loss from factors that influence outage costs. The outage
attributes might include duration, season, time of day, advance notice and day of the week. The
customer characteristics could include annual kWh usage, kW demand, type of business, type of
household, presence of various outage sensitive equipment, presence of backup equipment, and
other firmographic or demographic characteristics. Finally geographical attributes might include
temperature, humidity, frequency of storms and other geographical conditions affecting
economic losses from outages.

Customer damage functions are useful for reliability planning in several ways. First, the
customer damage function provides a framework for conceptualizing and estimating the factors
that influence customers’ outage costs for particular types of outages. Second, the use of a
customer damage function allows for analysis of the isolated effects of different attributes of
outages such as duration or time of day. Third, it can be used to quantify the economic losses
from different electricity system reliability investments by multiplying appropriately defined
customer damage functions by the un-served energy expected under different system investment
options. These calculations then become the basis for comparing different reliability solutions
and evaluating whether the economic benefits to customers are justified by the costs of the
investment options.

The use of customer damage functions and value of service reliability estimates applies to many
investment decisions facing utility planners, regulators, and policy makers. To compare
alternatives in a planning framework, the calculations may focus on the economic costs or
benefits of changes in un-served energy, the frequency of key events (like momentary outages or
voltage s%gs), or other aspects of the economic value of reliability. A few examples serve to
illustrate:

e Generation planning: As utilities add capacity, the probability of a generation capacity
shortfall declines and the cost of un-served energy at the time of peak demand declines.
Reducing the amount and hence cost of un-served energy is valuable to customers, the
question is whether these benefits outweigh the costs of obtaining them. By analyzing how
the benefits from reducing un-served energy are distributed across customer classes and by
knowing the economic value of that un-served energy has for different customers, planners
can determine whether costs to improve system generation reliability are balanced with the
value of the improvement to customers.

e Transmission planning: Transmission planners analyze the reliability of transmission lines to
assure sufficient capacity exists to serve customers under different failure contingencies.
With value-based planning, the failure scenarios can be examined based on the number and
frequency of voltage sags or power quality events they create and the costs to reinforce the
system to reduce these power quality problems. By comparing these costs to the economic
value to customers of the reduction in power quality problems, decisions can be made as to
whether system reinforcement creates sufficient net benefits to justify these added costs. The

? Detailed examples of the use of outage costs in various generation, transmission, and distribution planning
situations are provided in “Outage Cost Estimation Guidebook”, M. Sullivan and D. Keane, TR-106082, Electric
Power Research Institute, Palo Alto, CA: December , 1995.



customer damage function combined with the estimates of the frequency with which certain
events might occur serve as the basis for calculating the economic value of various options.

e Distribution planning: Customers on a distribution circuit can be served with different circuit
configurations (e.g., radial, loop, networked). Each configuration varies in its cost to
implement and each has different implications for the expected frequency and duration of
outages to customers served by these circuits. Planners can compare options by calculating
the expected un-served energy from various circuit designs and by examining the types of
customers currently on the circuit and forecasted to locate near the circuit through time.

They can also compare designs on the likelihood of various power quality problems. Using a
customer damage function, the economic value of the reliability improvements can be
calculated for specific groupings of customer types and for the specific reliability
problems/improvements anticipated for a given circuit. This economic value can be
compared to the cost of various options to balance the investment cost with the anticipated
benefits.

Value-based planning concepts have been around for 20 or more years. Over this period,, there
have been numerous studies to quantify the value of reliability as a basis for both public policy
and private investment, and for operating decisions regarding generation, transmission,
distribution, and retail offerings. Efforts have been made to measure outage costs or value of
service using a range of methods and techniques. Despite these efforts, Eto, et al. (2001) note
that:

1. There are few estimates of the aggregate cost of unreliable power to the U.S. economy, and
the estimates that are available are poorly documented or based on questionable
assumptions.

2. Costs of large-scale outage events (e.g., State- or region-wide power outages) are not well
documented and are mostly based on natural disasters for which it is difficult to separate
costs of electric interruptions from damages caused by other disaster features (e.g., property
damage from wind or water).

3. Studies of hypothetical outages obtained from outage cost surveys could be used to prepare
aggregate estimates of outage costs. However, there can be important differences in the
survey and statistical methodologies used in the studies that must be addressed in any meta-
analysis relying upon them.

4. Very little information is available in the public domain regarding the costs of power quality
problems — an increasingly important aspect of service reliability.

This report begins to address this information gap by conducting a meta-analysis of a large
number of the large-scale studies conducted by major electric utilities over the past 15 years to
assess the value of electric service to their customers. In all, 24 studies were included in this
analysis. These studies represent the efforts of 8 electric utilities to measure the value of service
reliability or outage cost in the residential, commercial, and industrial sectors.



These studies were chosen because they employed a common survey methodology including
sample designs, measurement protocols, survey instruments and operating procedures. This
methodology is described in detail in EPRI’s Outage Cost Estimation Guidebook (Sullivan and
Keane, 1995). A brief discussion of this methodology can be found in Appendix B. The goal of
this project was to assess the feasibility of combining the actual survey data from these
independently conducted studies into a single database by assembling andstandardizing them
into a national database of customer interruption costs. The database is used to describe
variations in interruption costs, including differences in interruption costs by outage duration and
time of day/season, as well as by customer type, characteristics, and regional (geographic)
differences.

The 24 studies chosen for analysis include virtually all the Southeast, most of the western U.S.
(including almost all of California, rural Washington and Oregon, and the largest metropolitan
areas in Arizona and Washington), and the Midwest south and west of Chicago. The time frame
covered by the studies ranges from 1989 to 2002. Several studies examined interruption costs
for similar customer populations (e.g., residential customers) at roughly the same time using
nearly identical measurement protocols, but were conducted by utilities located in different parts
of the country. In almost all of the studies, detailed demographic and firmographic information
was collected from study respondents and incorporated into the database of results.

While each individual study was extensively analyzed by the utility that conducted the study for
their own use, until now there have been no efforts to combine the data from the studies into a
single database. The value of combining the data and developing a set of meta-models is the
prospect of extending the results of the individual studies in several ways::

1. Individual utilities typically represent only one region of the country, whereas a combined
dataset may provide an opportunity to evaluate value of service across regions that will
include differences in temperature, humidity, energy rates, and regional economic conditions.

2. Customers are heterogeneous, particularly in the commercial and industrial sectors.
Combining the data provides additional cases to examine value of service for important sub-
segments.

3. Most of the studies examined here use a survey method in which customers responded to
various outage scenarios. By combining the data across studies, a broader range of scenarios
can be used to estimate the impacts of time of day, duration, season, and certain special
conditions, such as receipt of advance notice.

4. The studies were conducted over a 15-year period so some comparisons across time may be
possible.

Combining the data has several positive features, but there are also limitations with which to
contend. First, because the studies were conducted for specific utilities at specific points in time
some variables of interest are “collinear” with each other. For example, if there is only one study
from a utility in a particular region conducted at a particular time, then it is hard to separate the
effects of their unique climate and rates, and their customers’ outage experiences. This requires



caution in interpreting various effects because the data may not be ideally suited to provide
independent estimates of the effect of each variable.

Second, the studies chosen for this combined dataset used similar methods for collecting the data
but they did not necessarily use identical methods. As a result, it is important to consider that
some effects identified in the data may be the result of “methods” effects rather than substantive
effects of different variables.

This report is organized in 5 sections following this introduction. Section 2 describes the
methods used to create the combined dataset and provides a description of the data. Sections 3,
4, and 5 present findings, including customer damage functions, for the analyses conducted of
the large commercial-industrial, small-medium commercial, and residential sectors, respectively.
Section 6 summarizes our findings and discusses areas in need of additional research. Four
appendices follow. The first appendix provides a more detailed discussion of the data
transformation procedures used to assemble the databases. The second appendix reviews the
value of service methodology. The third appendix reviews issues in customer outage cost survey
design. The fourth appendix provides additional background on the present study and on the use
of findings from this study.






2. Development of An Integrated Data Base
2.1 Overview

The major objective of this project was to identify, gather, and combine the data from prior
utility value of service or outage cost studies into separate databases of findings for three distinct
customer groups: residential, small-medium commercial and industrial (C&l), and large C&lI.

As part of the initial review of past studies, 12 utilities were identified that had measured
customer outage costs using survey-based methods for one or more of these three customers
groups. Altogether, 24 datasets from 8 companies were ultimately acquired, standardized, and
then merged. Each dataset presented certain issues (see Appendix A), but it was possible in most
cases to develop rules for converting the data into meaningful datasets based on common
guestions or common metrics.

The following steps were taken in creating the databases:

1. Contact the utilities that had conducted customer interruption cost (or Value of Service or
outage cost) studies;

2. Negotiate agreement(s) to participate in the study, including agreements not to disclose

customer-specific information or present information that could be attributed to an individual

firm;

Obtain the datasets, codebooks, and original survey questionnaires;

Standardize each dataset in terms of variable selection and construct;

Merge the datasets;

Normalizeoutage costs to a common base year, using the 2002 Consumer Price Index; and,

Review the data and exclude outliers and other data anomalies.

Nookow

The core elements of this process are described in this chapter. Additional details are provided
in Appendix A.

First, all variables were standardized using a common metrics. For example, some studies may
have described the outage duration in hours (e.g., a 1 hour outage) while others may have used
minutes (e.g., a 30 or 60 minute outage). In this instance, the results for both studies would be
converted to minutes. Although the survey instruments for the various studies may have used
slightly different wordings, each study measured the same basic underlying concepts. These
included:

1. Attributes of the Outage (e.g., duration, frequency, season, time of day)
2. Summary of Costs (e.g., labor costs, material costs, damage costs)
3. Customer Characteristics (e.g., company size, household income)

In most cases, it was possible to find a common, underlying metric and convert all the responses
to that metric. While differences existed, in only one case were these differences so
insurmountable that data could not be merged, and were excluded from the meta-dataset.



Second, all of the scenarios were hypothetical. This is both a strength and weakness of this body
of studies. The goal in presenting customers with hypothetical outage scenarios is that they can
respond to the same stimulus or a carefully controlled description of a series of outages. This
simplifies associating costs and customer characteristics with attributes of outages like duration
and time of day. However, because these are hypothetical, customers do not provide actual costs
for actual events. They are asked to carefully estimate their costs for the hypothetical situations,
regardless of previous outage experiences. We cannot determine, prime facie, the biases inherent
in such self-reports of cost estimates associated with hypothetical outage scenarios.

Third, the outage scenarios varied in several ways, including duration of the outages, time of day
when outage began and season during which outage occurred. However, many tended to focus
on outages associated with system peak conditions. For example, studies conducted in northern
climates were focused primarily on winter outages, while those in southern climates were
focused primarily on summer outages. Some studies measured interruption costs for momentary
outages, while others did not. Some studies measured costs for long outages (i.e., 8-12 hours),
while the maximum outage duration was limited to 4 hours in others. The most commonly used
outage scenarios involved outages of one- and four-hour durations occurring on summer
afternoons. Most of the studies included a common 1-hour outage occurring at time of system
peak for all observations.

Fourth, the studies were conducted over a 15-year period. The results from each study are
appropriate for the time period during which the data were originally collected. To compare the
results across time it was necessary to take account of inflation and changes in the cost of living.
Accordingly, all of the cost data have been adjusted to 2002 dollars using the Consumer Price
Index.

Fifth, statistical power of the results was enhanced by organizing the data so that the responses
for each scenario in a survey were treated as independent observations or records. The strategy
used to collect outage cost data in most of these studies involved presenting customers with a
series of hypothetical outages and asking them to describe their costs (or to respond to a
willingness to pay to avoid their costs) to each one. Each respondent normally provide cost
estimates for more than one scenario (in some cases, up to 8 scenarios). Each response to each
scenario was treated as an independent response. For example, if one respondent provided
separate cost estimates for each of 3 scenarios, then these results were converted into three
separate records. The common variables, e.g., firmographic information such as SIC code, were
appended to each record.

Three meta-datasets were created for three customer groups: residential, small-medium C&I (1
MW or less) and large C&I (more than 1 MW). After combining all of the survey datasets with
comparable measurements, the two commercial and industrial datasets include the following
information on each observation:

1. Season;

2. Onset time of day;
3. Onset day of week;
4. OQutage duration;



Whether advanced warning was received,
Customer’s region;

Year interruption cost study was completed;
Estimated interruption cost;

9. Customer’s SIC code;

10. Customer’s business type;

11. Number of employees;

12. Whether company has back-up generation; and
13. Customer’s annual kwWh consumption.

O No O

The residential customers’ survey included similar outage scenario information (items #1-7,
above) but also included:

Willingness to pay measure (WTP);

Willingness to accept credit (WTA or Credit);

Type of housing;

Home ownership;

Household income;

Whether household has sickbed resident;

Whether household uses medical equipment in the home; and
Whether household has a home business.

NN E

The commercial and industrial, and the residential datasets are also differed from one another in
other important respects, as described in the following two sub-sections.

2.2 Commercial and Industrial Datasets

Development of commercial and industrial sector databases involved creating separate databases
for the large C&I and small-medium C&I data. . Each includes enterprises involved in all
aspects of commercial and industrial activity as well as government services. Although utilities
use slightly different criteria for defining small-medium versus large customer classes, we used a
common criteria to assign customers to either small-medium or large C&I. The small-medium
commercial and industrial customer was defined as a customer with less than 1 MW of peak
demand. The large C&I customer was defined as a customer with more than 1 MW of peak
demand.

For both commercial and industrial customers, all of the studies employed the same outage cost
estimation methodology — direct worth or direct cost estimation (see Appendix C). In the direct
worth estimation methodology, customers were asked to estimate the losses they would
experience under varying assumptions about the timing, duration and extent of electric outages.
In most cases, the estimation involved customers completing a worksheet for each scenario in
which they reported various types of costs and various types of savings. These costs and savings
were then summed to calculate a net cost of the outage. Customers were generally asked to
provide estimates for four to ten scenarios (i.e., combinations of onset time, duration, extent of
advance warning, season and day of the week). Thus, these studies produced a range of
estimated outage costs for each customer — one for each combination of interruption conditions



on which they were asked to report. It is not uncommon for some of the customers within a
given study to receive one randomly chosen set of outage conditions, while others receive a
somewhat different randomly chosen set.

For the two commercial and industrial datasets, the primary dependent variable is total cost of
the outage on a per event basis. In most cases, demand and usage information for each customer
was also available and, for reporting purposes, was used to express outage cost on a per peak KW
and per annual kWh basis. However, these expressions of costs were not calculated individually
for each record. Rather, they were calculated by dividing the average total cost per outage event
for all records with that scenario by the average kW or kWh for the customers who responded to
that scenario. This method is reasonable because there is often a good deal of measurement error
associated with the estimate of kwh and kW for the specific site for which the outage cost data is
being collected. Survey respondents are asked to assume the outage occurs at a defined location,
but because of multiple meters per site and multiple sites per firm (e.g., the corporate
headquarters versus the manufacturing facility) it is not always possible to collect usage and
demand data for the specific site being referred to in the survey. By dividing the aggregate per
event outage cost by the aggregate kWh or kW, the errors tend to be smoothed and there are
fewer issues with large outliers in the underlying data as a result of incorrect usage or demand
estimates for a site.

2.3 Residential Data

Unlike the commercial and industrial customers where much of the “costs” associated with an
outage can be converted into an economic loss based on lost profits or costs over savings, the
costs of outages to residential customers are often more intangible. Residential customers tend
to describe their costs in terms of the “hassle” or “inconvenience” of an outage rather than in
terms of specific labor or material costs. For this reason, most of the residential outage cost
studies in this meta-analysis use some form of ‘willingness to pay’ (the amount the household
respondent would be willing to pay in order to avoid an outage of a certain scenario) as the
dependent variable (rather than rely on estimation of direct costs). The meta-analysis described
here focuses on these ‘willingness to pay’ measures. In a few instances, the original studies also
included some measure of the amount a customer is “willing to accept” in the form of a credit on
the customers’ bill for the inconvenience of an outage as a measure of value of service reliability.
These latter measures of willingness to accept are less widely used so there was insufficient data
to build models across the studies. Available results from both forms of outage cost estimation
are presented in Section 5.
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3. Large Commercial and Industrial Results

The large commercial and industrial dataset is built from 10 studies conducted by 8 companies
and includes approximately 2,009 respondents. Overall there are 8,462 total responses available
for the analysis. The number of cases varies, depending on availability of data (that is, either the
study or the respondent’s scenario details may have missing values). The distribution of the
available data across various outage attributes, years, and customer characteristics is described
first. A summary of the multivariate analysis is presented second.

In terms of coverage, Table 3-1 summarizes the number of records available for analysis by
region, season, day of week, and year of study. Overall there are 7,862 responses to various
scenario combinations across these four variables. The results show that the number of
responses ranges from 40 to nearly 2000 for various combinations. Overall there is fairly good
coverage across regions, for winter versus summer seasons, and across year of study. For the
large commercial and industrial sector, there is limited data on weekday versus weekend outages.

While suggesting a reasonable degree of coverage for conducting the meta-analysis, the results in
Table 3-1 also point to key limitation in the data. In particular, the results show that there are
certain “holes” in the coverage that will limit the ability to use the merged data to sort out effects
for some variables. For the four variables in Table 3-1, for example, the region of the country
and the year of the study are highly correlated. In most years only one or two utilities did a study
and these studies were done in different parts of the county. As a result, if a calculation of the
average outage cost for a given year is calculated it would be heavily influenced by the region
and type of scenarios asked in that region. For this reason, the data cannot be used very
effectively to evaluate the changes in outage costs over time without additional statistical
controls for the region (or utility) and scenario characteristics.

Table 3-1. Number of Cases by Region, Company, Season and Day of Week and Year of
Study

Year of Survey
Region - Company| Season | Day of Week| 1989 1990 1991 1993 1997 1999 2000 2002| Total
Northwest-1 Winter |Weekday 843 843
Northwest-2 Summer [Weekday 129 129
Winter |Weekend 671 671
Midwest Summer [Weekday 1135 1135
Southwest Summer [Weekday 758 758
West Summer [Weekday 570 570
Winter |Weekend 227 227
Winter |Weekday 104 194
Southeast-1 Summer [Weekday 40 40
Southeast-2 Summer |Weekend 108 108
Winter |Weekday 1017 891 1908
Southeast-3 Summer |Weekday 1268 101 1369
TOTAL 843 1268 101 1017 1039 800 1659 1135 7862

This problem surfaces for many of the calculations of outage costs that would be of interest.
Simple comparison of average outage costs for levels of a variable of interest (such as outage
costs for different outage durations or for different regions) must be interpreted very cautiously
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outside the context of a multivariate model that can control for other customer or outage
attributes. The underlying group of customers responding to a scenario will vary from scenario
to scenario and differences in these underlying groups may be more important in explaining
differences in the outage costs than the levels of the variable of interest (such as duration).

For this reason, we remind the reader that the regression analysis presented at the end of this
chapter provide the most meaningful information on the value of service. The bivariate
tabulations presented in the tables are suggestive, but due to the methodological and data
structural issues, may be somewhat misleading. For example, it makes sense to compare the
effect of a specific condition on outage cost when the same respondents provide information to
both permutations. However, frequently one group of respondents provides information about
one kind of scenario, and these results are compared to different respondents. Importantly, only
regression or similar analyses take all of these factors into consideration simultaneously and
consistently.

In Tables 3-2 and 3-3, comparisons of the average outage costs for a 1-hour outage for several
key variables—outage duration, season, day of week, region, and SIC grouping—are presented.
The data include the mean and median outage cost per event, the standard deviation of the mean,
the values representing the 25 percent and 75 percent values around the mean, and the outage
cost per event standardized to outage cost per annual kWh and per kW. These values are
presented to provide a measure of the typical values and range of values in the underlying data
used in the meta-analysis. These comparisons provide a measure of the validity of the data.
However, as noted above, these averages must be compared carefully as the underlying pool of
customers included in the calculation changes from level to level.

Table 3-2 shows the distribution of outage costs (per event, per annual kWh, and per peak kW)
by outage duration. The results show outage costs rising from an average of $15,601 for a
voltage sag to $119,715 for a 4-hour outage. The results trend generally upward as would be
expected. There are two deviations from this trend. First, the 1-2 second outage has a
significantly higher per event cost ($23,097) than the events on either side of the duration curve
(voltage sag at $15,601 and 1-minute outage at $12,944). The second deviation is the downward
trend in outage cost from the 4-hour duration ($119,715 per event) to the 8-hour ($88,224 per
event) to the 12-hour duration ($58,562 per event). It is possible that these differences represent
a methodological artifact as only one study used the 1-2 second duration and the 12-hour
duration. A discussion of the effect of duration on outage costs in the context of a multivariate
model controlling for differences among the studies is provided later in this section.

Table 3-2 also shows the outage costs converted to costs per annual kWh and per peak kW. On a
per annual kWh basis, the results also suggest that outage costs generally increase with duration
from $0.0006 to $0.0187 across the range of duration from a voltage sag to a 12-hour outage,
respectively. The data on outage cost per kW of demand is less straightforward. The costs range
from $3 per kW of demand for a voltage sag to $45 per kW for an 8-hour outage. The costs also
increase in a generally stepwise fashion but with a large jump for the 15-minute duration. This
jump at 15 minutes is likely an artifact of the underlying study that used this duration.
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Table 3-2. Outage Costs by Duration

BY DURATION
Cost Per
Annual
kWh Cost Per
Total Cost/Event Usage Peak kW
Duration N # Firms Median Average StdDev 25% 75% | Average | Average
All 7865 9 5502 70634 271816 34 35373 0.0041 20
Voltage Sag 444 8 0 15601 69990 0 2771 0.0006 3
1-2 sec 615 1 2 23097 94201 0 7063 0.0010 5
1 min 200 2 1502 12944 53648 500 5500 0.0011 5
15 min 212 1 0 46790 420257 0 3266 0.0083 29
20 min 225 1 3370 18245 62847 1000 10000 0.0016 7
30 min 647 1 9045 70238 237525 107 44315 0.0024 14
1hr 2728 2 4354 59983 256054 23 25488 0.0037 15
4 hr 2097 6 19331 119715 348509 1776 77584 0.0067 35
8 hr 568 3 16568 88224 306076 200 69197 0.0100 45
12 hr 129 2 20746 58562 126745 4320 53996 0.0187

Table 3-3 provides a similar summary of the average outage cost for 4 other outage attributes or
customer characteristics including season, weekday/weekend, region, and SIC code. The results
are shown only for scenarios where the duration was 1 hour.

Table 3-3. Summary of Outage Costs for Key Attributes for a 1-Hour Outage

1 HOUR DURATION
Cost Per
Annual

kwWh Cost Per

Total Cost/Event Usage Peak kW

SEASON N # Firms Median  Average  Std Dev 25% 75% Average | Average
All 2315 7 6034 67649 275911 2 30269 0.0036 17
Winter 421 2 0 39981 274447 0 13062 0.0071 25
Summer 1894 6 8457 73799 275931 224 37638 0.0034 16

DAY
All 2728 8 4354 59983 256054 23 254388 0.0037 15
Weekday 2491 8 6034 65307 267319 65 29574 0.0037 17
Weekend 237 3 216 4028 13810 0 2160 0.0015 NA
REGION
All regions 2728 8 4354 59983 256054 23 25488 0.0037 15
Northwest 834 2 687 28609 200482 0 10160 0.0066 18
Southwest 190 1 1392 51909 171755 106 18829 0.0039 22
Southeast 1352 3 11320 86477 310234 68 50816 0.0033 15
West 120 1 5617 52735 218548 434 24220 0.0073 33
Midwest 232 1 6000 28735 93286 1759 19453 0.0025 11
SIC

All SIC 535 3 18242 100148 358231 940 61348 0.0034 20
Agriculture 4 2 2074 8476 14247 499 16452 0.0002 1
Mining 17 2 52456 76463 87720 6459 93993 0.0019 11
Construction 1 1 466 466 466 466 0.0000 0
Manufacturing 331 2 24828 131214 426764 8528 94911 0.0035 21
Telco & Utilities 46 2 1489 64339 239499 52 17620 0.0031 18
Trade & Retail 19 2 7030 11153 12589 522 17205 0.0024 13
Finance, Ins., R.E. 11 2 4746 203540 624425 0 27785 0.0415 168
Services 84 2 761 18043 41168 0 17864 0.0020 9
Public Admin 22 2 9938 85779 139384 16 134796 0.0039 19
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The data suggest that outage costs on a per event basis are higher in the summer than the winter
($73,799 versus $39,981); are higher on weekdays than weekends ($65,307 versus $4,028); are
higher in the Southeast ($86,477 per event) than in the Northwest ($28,609 per event) or
Midwest ($28,735 per event); and are higher for finance /insurance/real estate ($105,468 per
event) and manufacturing ($88,483) than other business and government sectors.

These patterns generally hold for outage cost estimates on a per annual kWh and per kW basis
with a few modifications. First, in terms of season, the outage cost per event is substantially
higher in the summer than the winter, but this difference is reversed when the amount of usage or
demand is taken into account. The outage cost per annual kWh is $.0071 for winter outages and
it is $.0034 for summer outages. Similarly, the outage cost per kW of demand is $25 for winter
and $16 for summer. This suggests that seasonal differences in outage costs are closely tied to
consumption.

The day of the week data show that outage costs on a per annual kwh are much higher during
the week than on the weekend for large commercial and industrial customers. Weekday outage
costs per annual kWh are $.0037 for weekdays and $.0015 for weekends. Data on outage costs
per KW were not available for the weekend scenario. These differences are suggestive of much
lower average outage costs during periods when most businesses are closed (weekends)
compared to when they are open (weekdays).

For data on regions, the rank order of the regions is somewhat different when the outage costs
are measured on a per annual kwWh and kW basis. The West region has the highest costs per
annual kWh ($.0066 ) and cost per kW ($33), while the Midwest (at $.0025 per annual kWh and
$11 per kW) has the lowest values.

Finally, in terms of SIC codes, finance/insurance/real estate has the highest cost per event, and
also has the highest costs per annual kwWh costs ($0.0252) and per kW costs ($90). The
remaining business types range from $0.0010 to $0.0057 on a per annual kWh basis with
trade/retail being the highest and construction being the lowest.

The two most problematic scenario characteristics are whether the firm has a back-up system,
and whether the scenario includes receipt of advance warning. The only way to make the cost
comparisons meaningful is to be certain that one is comparing the same scenarios while varying
the characteristics, and do so with essentially the same respondents. For advanced warning, only
one study provided this direct comparison, such that for a 1-hour summer weekday outage, the
event cost with advance warning was $302,206, and without advance warning it was $475,680
(n=205), or more than 50% higher. Back-up seems more promising: whether one has back-up is
a standard question, yet there was approximately 20% item non-response for the meta-set.
Nevertheless, for two scenarios — 1-hour summer weekday and a 4-hour summer weekday, we
have adequate data to report:

Outage Scenario Has Back-up | N | NoBack-up| N
1-Hour Summer Weekday Outage $215,012 | 1,042 | $1,052,564 | 676
4-Hour Summer Weekday Outage $307,272 | 873 | $1,175,910 | 663
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In the regression models for the Customer Damage Function shown in the next section, these two
variables were found to be unusable due to the data structure inconsistencies.
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3.1 Customer Damage Function Estimation

The summary of outage costs for the key characteristics outlined above provides a measure of
whether the combination of various studies fit intuitively with expectations of outage costs for
this sector. However, the results may not be particularly useful when examined one variable at a
time. The average value of the outage costs for any given descriptor variable is a function of the
outage attributes, region, and the customer types that answered that particular scenario. As noted
at the beginning of this section, the combination of customer and outage characteristics can vary
substantially depending on the variables being examined. To adequately control for these
varying influences, a multivariate analysis was conducted to develop a multivariate customer
damage function. In this manner, the information about the scenario and firm characteristics was
used to estimate a general customer damage function expressing commercial and industrial
customers’ outage costs as a function of outage duration, onset time, season, and various
customer characteristics such as annual usage, number of employees and other variables.

The ideal conceptual framework within which to analyze the above-described data is statistical
regression. However, the use of an Ordinary-Least Squares (OLS) approach is inappropriate for
typical outage cost data. The key issue is the usual response distribution for the dependent
variable — outage costs. In almost all studies, and including the large commercial and industrial
customers, a significant number of respondents will report “0” (zero) outage costs for many
scenarios. This is particularly true of short duration outages, but may be true of even longer ones
at certain times of the day or seasons. As a result, standard OLS regression techniques will yield
biased parameter estimates. To overcome this problem, the analysis reported below uses Tobit
regression®. Tobit is a useful technique when the underlying distribution of the dependent
variable is censored or truncated in some fashion. It essentially combines the estimation of the
probability that the customers’ outage cost is “0” and the estimation of the value of the outage
cost if it is non-zero. This maximum likelihood regression procedure estimates the regression
parameters under the assumption that all non-positive measurements are truncated at zero (i.e., a
customer cannot have a negative outage cost).

In conducting the analysis, a second set of techniques was used to improve the estimation
process. The typical distribution of outage costs in addition to having a large number of zeros
will also often have very extreme values. A few values in the positive tail of the distribution
may be as much as 100 or 1000 times higher than other values. In most outage cost studies using
surveys (including those used in this meta-analysis), a great deal of attention is given to checking
to confirm high values or excluding them if they appear to be inappropriate (due, for example, to
calculation error or misunderstanding of the question). Since for the project the original surveys
are not available, two procedures were used to handle the potential outliers in the distribution.
First, the top 0.05% of the entire calculated outage cost distribution was truncated to eliminate
extremely high values.

Second, the analysis was conducted on the logarithm of the outage cost rather than the actual
outage cost for the commercial and industrial customers. The decision to use a lognormal
distribution was based on several considerations. Using a lognormal transformation gives the

® See Chapter 7, “Limited Outcomes: The Tobit Model” in Regression Models for Categorical and Limited
Dependent Variables, J.S. Long, Sage Publications: Thousand Oaks, CA, 1997.
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underlying distribution of outage costs a more normal shape with less severe tails (Figures 3-1,
3-2, 3-3). This transformation helps assure that the distribution of the error term is normal (an
important assumption in using regression) as any skew in the error term is likely associated with
the extreme values of some outage costs. Finally, the logarithm produces a distribution in which
a customers’ outage cost is “0” when the duration is “0”, but allows for a rapid nonlinear rise in
outage costs for even a momentary event.

Because of this log transformation, the metric values of the parameters in a Tobit model cannot
be directly interpreted in terms of interruption costs. However, exponentiation of the function
produces a predicted outage cost given values of variables in the models. To observe the
magnitude of the impact of the variables in the models on the interruption cost it is therefore
necessary to compare the predictions made by the function under varying assumptions. For
example, it is possible to observe the effects of duration on outage cost holding the other
variables constant at their sample means. In this way, a prediction is obtained for customer
outage costs under different outage conditions.

2000 =

N 1000

Std. Dev =445
Mean =7.12
M = 7865.00
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Figure 3-1. Logged Per Event Cost Distribution
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Figure 3-2. Logged Outage Cost per Annual kWh
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Figure 3-3. Logged Outage Cost per Peak kW

To develop a set of models, several combinations of the variables representing attributes of the
outage (e.g., duration, time of day, advanced warning) and customer characteristics (e.g., number
of employees, SIC code, and presence of backup) were tested. Because not all studies included
the same variables, there was significant data loss when models using some variables were
estimated. For example, very few studies included scenarios with advance warning as an
attribute so if this attribute was included in the Tobit model the number of cases was
substantially reduced. In the end, the regression models for the large C&I (and the other two
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customer groups) consisted of variables that were significant, were not collinear (as is region
with season, since the Northwest utilities included winter scenarios but none of the Southeast
regions did), and did not exclude a substantial number of cases (for example, with advanced
warning, since very few scenarios included that variable).

Table 3-4 below describes two Tobit regression models that specify the relationship between
various outage and customer characteristics and customer outage cost for which sufficient data
from multiple studies were available. Model One contains only the parameters associated with
outage attributes and customer size. The largest number of cases is available to estimate this
model. Model Two includes parameters describing the business activities being interrupted.
Information on the customers SIC code is available for a smaller subset of the data.

These customer damage functions are a key output from this research. The models can be used
to estimate outage costs for a wide range of outages with different attributes (e.g., duration, time
of day) and for different types of customers (e.g., large versus small companies). They replace
the enormous number of tables that would be required to summarize all the different
combinations of characteristics. Using this information is relatively straight-forward. To
simulate the outage cost for a particular set of outage or customer characteristics one multiplies
the appropriate value for each variable times the coefficient for that variable. The
multiplications are summed across the variables and added to the constant (first entry for each
model). Since the variable being predicted—i.e., outage cost—nhas been transformed to be the
log of the outage cost, as a final step in the simulation the antilog of the summed value must be
taken. The resulting value is the predicted outage cost for the set of values used for each
independent variable.
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Table 3-4. Tobit Regression Models for Predicting Outage Costs

Model One Model Two
Predictor Parameter S.E. Pr>ChiSq | Parameter S.E. Pr>ChiSq
Intercept 7.7954 0.1377 <.0001 7.6941 0.1542 <.0001
Duration (hours) 0.5753 0.0376 <.0001 0.5771 0.0357 <.0001
Duration Squared -0.0338 0.0035 <.0001 -0.0331 0.0032 <.0001
Number of Employees 0.0007 0.0001 <.0001 0.0006 0.0001 <.0001
Annual kWh 2.52E-08 0.004 <.0001( 2.25E-08 0.0036 <.0001
Interaction Duration and kWh -1.80E-09 0.001 0.0703| -1.30E-09 0.0009 0.1282
Morning -0.5624 0.1308 <.0001 -0.4319 0.1144 0.0002
Night -1.3857 0.1841 <.0001 -1.4464 0.1739 <.0001
Weekend -0.7149 0.1485 <.0001 -0.6482 0.1441 <.0001
Winter 0.8992 0.0996 <.0001 0.8376 0.0901 <.0001
Manufacturing 0.5292 0.1166 <.0001
Mining 1.1378 0.2484 <.0001
Construction 0.9168 0.808 0.2565
Transportation/Utilities -0.193 0.1585 0.2233
Finance/Insurance/Real Est. 0.3252 0.2841 0.2522
Services -0.4661 0.1363 0.0006
Public 0.0253 0.2431 0.917
Number of Observations 3198 2542
Zero Response 718 427
Log Likelihood -6904 -5087

Figure 3-4, below, displays a comparison of the results of the customer damage function in
Model One over the durations found in the sample dataset under varying times of day and
seasons. This model controls for the customers size in terms of number of employees and annual
consumption (kWh). The predicted results assume the average value for number of employees
and annual kWh.

It is evident that the relationship between outage costs or damages and duration is non-linear —
increasing slowly within the first hour, accelerating through the second through the eighth hours,
and declining thereafter. All of the predictions are positive at the intercept representing the
impact of momentary interruptions. Outage costs for winter outages are significantly higher
when controlling for customer size and consumption than those experienced in summer; and
outage costs during the night and on weekends are significantly lower as expected.
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Customer Damage Function - Model One for Large C&I: Varying Season and Time
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Figure 3-4. Customer Damage Functions — Model One Varying Season and Time of Day

The results show that, for the large commercial and industrial customer pool, an average
customer with 373 employees and 17.5 million annual kwWh consumption will experience
approximately $20,000 in costs from a 1-hour afternoon outage in the winter and $8,166 in costs
for a summer afternoon 1-hour outage. These costs increase sharply as duration increases in the
winter; costs also increase substantially with duration in the summer.

The curvilinear nature of the line suggests that for large commercial and industrial
establishments costs actually moderate with longer outages. This makes sense as focus groups
and interview respondents often note that at some point employees are sent home, shifts are
eliminated, and the outages extend into hours that would be normally non-productive (evening
and night time hours). Since none of the studies measure costs beyond 12 hours, it is impossible
to say from this data when and by how much costs rise as an outage extends into multiple days.

It is also possible to estimate the customer damage function by varying other parameters. For
example, it is possible to observe the effect of customer size (measured in kwWh or employees),
by holding other parameters constant and systematically varying the size of customer. Figure 3-
5, below, displays the results of estimating customer outage cost for summer afternoons varying
annual kwh consumption away from the mean by a factor of 10 (i.e., from 1,750,970 kWh to
175,097,016).
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Customer Damage Function - Model One for Large C&I: Varying Customer Size in
Annual KWh Consumption, Summer Afternoon Outage
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Figure 3-5. Customer Damage Functions — Model One Varying Customer Size

It is evident that the size of a customer’s load dramatically increases the outage cost, and the
relationship is not linear. A decrease of 90 percent in kWh consumption from the average
consumption in the sample results in only a small reduction in customer outage cost, while
increasing it by a factor of 10 dramatically increases customer interruption cost. In addition, the
model results show that for larger customers, the costs start high and escalate rapidly during the
first three to four hours. But if an afternoon outage lasts beyond 5 to 6 hours, the costs come
down dramatically as facilities start to take actions to lower their costs.

In addition to outage attributes and customer size, Model Two contains parameters describing the
effects of business type on outage costs. A separate model was estimated for this analysis
because several of the surveys included in the study did not report business type. Figure 3-6,
below, displays the customer damage functions from Model Two estimated for different types of
businesses. All of the other parameters in the model are held at their means thus allowing an
assessment of the independent effect of business type. That is, the dark blue line (with
diamonds) indicates the customer damage function for outages on a summer afternoon,
experienced by establishments involved in retail trade using an average of 17,509,7016 kWh
annually and with about 373 employees.

It is apparent in the figure that interruption costs for mining far outstrip those of any other
business activity. They are more than double the costs experienced by businesses involved in
retail trade and more than four times the cost experienced by customers involved in public sector
activities (e.g., schools and municipal buildings). The next highest outage costs are for
customers involved in construction. Costs for manufacturing and construction are significantly
higher than those of other businesses.
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Costs for other business types are relatively close to those of retail trade, though the differences
among them are statistically significant.

Customer Damage Function- Model Two: Large C&I, Varying Business Type
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Figure 3-6. Customer Damage Functions For Various Business Types

From the above examples it should be apparent that it is possible to use the customer damage
functions from the above models to estimate customer outage costs under a wide variety of
conditions. However, it is not appropriate to use these functions to estimate outage costs for
individual customers. The regression functions used above are really predicting the mean of the
customer outage cost for populations of customers with different characteristics under different
conditions. There is substantial unexplained variation among customers in the outage costs they
experience resulting from factors that are not accounted for in the above equations (e.g., process
design differences, resistance of equipment to electric disturbances, etc.) and will not generally
be known without an in-depth interview. The existence of these unknowns virtually guarantees
that the prediction for any individual customer from the above functions will be significantly in
error. Appendix D examines this issue from the standpoint of estimation of individual customer
damages in a legal setting.

The above caution does not apply to the application of the above equations for reasonably large
populations of customers where the law of large numbers and central limit theorem ensure that
random but significant differences among customers do not produce estimates that deviate
dramatically from the predictions made by the above equations.
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4. Small and Medium Commercial and Industrial Results

The small-medium commercial and industrial dataset is built from 9 studies conducted by 8
companies and includes approximately 5,200 respondents. Overall, there were approximately
24,000 total responses available for the analysis. The distribution of the available data across
various outage attributes, years, and customer characteristics is described first. A summary of
the multivariate analysis is presented second.

In terms of coverage, Table 4-1 summarizes the number of records available for analysis by
region, season, day of week, and year of study. Overall there were 23,800 responses to various
scenario combinations across the studies, considerably more than were available for analysis in
the large commercial and industrial customer database. The results show that there are from 400
to several thousand responses depending on the scenario and region combination (with the
exceptions of two small studies; one with 7 cases and the other with 24 cases). There are a
substantial number of cases available for the analysis of summer and winter scenarios occurring
on both weekdays and weekends. The data also vary reasonably across regions although, again,
there is no coverage for the Northeast. Most of the studies were completed in the past 5 to 6
years, but two studies date back to the late 1980°s and early 1990’s. Overall, the data in Table 4-
1 suggest sufficient coverage to develop models of outage costs for a wide cross-section of the
country and across a range of scenarios.

Table 4-1. Number of Cases by Region, Company, Season and Day of Week — Small-
Medium C&I

Year of Survey
Region - Company| Season [ Day of Week| 1989 1991 1993 1997 1999 2000 2002 [ Total
Northwest-1 Winter Weekday 1650 1650
Northwest-2 Summer  |Weekend 877 877
Summer  |Weekday 4467 4467
West Summer  |Weekday 2105 2105
Winter Weekend 860 860
Winter Weekend 443 443
Midwest Summer  |Weekday 2014 2014
Southwest Summer  [Weekend 515 515
Summer  |Weekday 3767 3767
Winter Weekday 1006 1006
Southeast-1 Summer  |Weekday 7 7
Southeast-2 Summer  |Weekend 935 935
Summer  |Weekend 24 3,805 3829
Southeast-3 Summer  [Weekday 1325 1325
TOTAL 1650 1325 24 4747 5344 8696 2014 23800

While the data in Table 4-1 show fairly broad geographical coverage and coverage across types
of outages, they also indicate the need for caution in interpreting the data for certain
combinations of characteristics, just as was true with the large commercial and industrial data.
For example, all of the 1989 data are winter weekday scenarios from one region (the Northwest),
while all of the 1991 data are summer weekdays from the Southeast. Comparing the average
outage costs for the years 1989 and 1991 without some effort to control for the effects of the
differences in region and type of scenario would be misleading. The next few tables provide a
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summary of the observed outage costs for a few key variables but, again, caution must be used in
interpreting the results because of these coverage issues.

Table 4-2 shows the distribution of outage costs (per event, per annual kWh, and per kW) across
by outage duration. The results show outage costs rising from an average of $203 for a voltage
sag to $7,361 for an 8-hour outage. The results trend generally upward as would be expected.
There are two deviations from this trend. First, the 1-2 second outage has a significantly higher
per event cost ($1,230) than the events on either side of the duration curve (voltage sag at $203
and 1-minute outage at $543). The second deviation is the downward trend in outage cost from
the 8-hour duration ($7,361 per event) to the 12-hour duration ($5,590 per event). It is possible
that these differences represent a methodological artifact as only one study used the 1-2 second
duration and the 12-hour duration. A discussion of the effect of duration on outage costs in the
context of a multivariate model controlling for differences among the studies is provided later in
this section.

Table 4-2. Costs by Duration — Small-Medium C&lI

BY DURATION

Cost Per Annual | Cost Per
Total Cost/Event kWh Usage Peak kW
Duration N # Firms Median Average StdDev 25%  75% Average Average
All 23800 9 209 2735 8608 0 1512 0.0218 55
Voltage Sag 882 8 0 203 3200 0 0 0.0015 1
1-2 sec 2072 1 3 1230 5153 0 439 0.0132 34
1 min 255 2 4 543 2078 1 100 0.0028 2
15 min 413 1 0 831 3983 0 189 0.0040 9
20 min 353 1 100 980 4901 5 500 0.0051 3
30 min 980 1 365 2367 7020 35 1599 0.0211 49
1hr 10849 2 108 1859 6623 0 940 0.0155 40
4 hr 5836 6 756 4220 10634 13 3135 0.0368 91
8 hr 1319 3 1250 7361 15653 1 6685 0.0431 99

12 hr 841 2 1620 5590 11230 540 5400 0.0408

Table 4-2 also shows the outage costs converted to a cost per annual KWh and per kW basis. On
a per annual kWh basis, the results also suggest that outage costs generally increase with
duration from $0.0015 to $0.0431 across the same range of duration from a voltage sag to an 8-
hour outage (with the same deviations). The data on outage cost per kW of demand is less
straightforward. The costs range from $1 per kW of demand for a voltage sag to $99 per kW for
an 8-hour outage. T he costs also increase in a stepwise fashion with large jumps in the average
cost per kW between 20 minutes and 30 minutes and between 1 hour and 4 hours. The jump
between 20 and 30 minutes is likely an artifact of the underlying study that used these two
durations. The jump between 1 hour and 4 hours is more robust as several studies included these
two durations among their scenarios.

Table 4-3 provides a summary of the average outage cost for 4 other outage attributes or
customer characteristics including season, weekday/weekend, region, and SIC code. The results
are shown only for scenarios where the duration is 1 hour. The data suggest that outage costs on
a per event basis are higher in the winter than the summer ($2,643 versus $1,897); are higher on
weekdays than weekends ($2158 versus $768); are higher in the West than in other regions of the
country; and are higher for manufacturing and agriculture.
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Table 4-3. Summary of Outage Costs for Key Attributes for a 1-Hour Outage

1 HOUR DURATION
Cost Per Annual [ Cost Per
Total Cost/Event kWh Usage Peak kW
REGION N #Firms Median Average StdDev 25%  75% Average Average
All regions 10849 8 108 1859 6623 0 940 0.0155 40
Northwest 3596 2 54 1686 6575 0 643 0.0111 18
Southwest 3064 1 305 2176 6845 47 1275 0.0282 66
Southeast 3363 3 0 1484 5721 0 561 0.0133 26
West 411 1 1045 4581 11194 157 4180 0.0448 102
Midwest 415 1 200 1369 5270 25 1000 0.0072 4

SEASON
All 8080 7 117 2066 7135 0 1045 0.0181 44
Winter 1833 3 146 2643 8699 0 1262 0.0196 47
Summer 6247 7 112 1897 6597 0 1009 0.0175 46
DAY
All 10849 8 108 1859 6623 0 940 0.0155 40
Weekday 8522 8 157 2158 7200 0 1125 0.0176 44
Weekend 2327 3 5 768 3626 0 336 0.0068 25
SIC

All SIC 4278 3 108 2183 7478 0 1080 0.0147 29
Agriculture 176 2 22 2023 8897 0 529 0.0190 66
Mining 16 1 22 898 1632 0 940 0.0032 4
Construction 132 2 212 2221 4121 0 2208 0.0229 47
Manufacturing 559 2 1080 5040 10627 0 4860 0.0236 52
Telco & Utilities 237 2 108 1786 5502 0 1045 0.0100 23
Trade & Retail 1382 2 209 1927 7210 0 994 0.0123 35
Finance, Ins., R.E. 189 2 43 2072 7174 0 661 0.0276 53
Services 1440 2 35 1504 6619 0 561 0.0116 15
Public Admin 147 1 1 1442 4471 0 540 0.0094 20

These patterns generally hold for outage cost estimates on a per annual kWh and per kW basis
with a few modifications. First, in terms of season, the outage cost per event is substantially
higher in the winter than the summer, but this difference is reduced when the amount of usage or
demand is taken into account. The outage cost per annual kWh is $0.0196 for winter outages
and $0.0175 for summer outages. Similarly, the outage cost per KW of demand is $47 for winter
and $46 for summer. This suggests that seasonal differences in outage costs are closely tied to
consumption.

In contrast, the day of the week data show that outage costs on a per annual kWh and per kW
basis are much higher during the week than on the weekend for small commercial and industrial
customers. Weekday outage costs per annual kWh are $0.0176 for weekdays and $0.0068 for
weekends, while costs per kW are $44 for weekdays but only $25 for weekends. These
differences illustrate the much lower average outage costs during periods when most businesses
are closed (weekends) compared to when they are open (weekdays).

For data on regions, the results by kWh and kW largely mirror the cost per event data. The West
region has the highest costs per annual kWh ($0.0448 ) and cost per kW ($102), while the
Midwest (at $0.0072 per annual kWh and $4 per kW) and the Northwest (at $0.0111 per annual
kWh and $18 per kW) have the lowest values.
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In terms of SIC codes, the data on a per annual kWh and per kW basis are fairly similar to the
per event data with two exceptions. Manufacturing, which has the highest cost on a per event
basis, also has high costs on a per annual kwWh ($0.0236) and per kW ($52) basis. Mining,
telecommunications/utilities, trade and retail, services, and public administration all tend to have
low costs per event as well as low costs per annual kWh and kW relative to other SIC groups.
The two key exceptions are agriculture and finance/insurance/real estate. Agriculture has a low
per event cost and a fairly low per annual kWh cost ($0.019), but a relatively high per kW cost
($66). Finance/insurance/real estate has a relatively low cost per event but has relatively high
per annual kWh costs ($0.0276) and per kW costs ($53)

Finally, as with the large C&I data, there was only one study where receipt of advance warning
was examined in a noticeable way, and the results there were still counter-intuitive, with receipt
of advance warning being associated with higher outage costs than those who received no
warning. This anomaly may be a result of the manner in which the question was asked, in that
those without advance warning received a different set of possible numeric values (for a
‘willingness to pay’ measure) than those whose scenario included an advance warning. Back-up
numbers were particularly counterintuitive. As we shall conclude, while the basic methodology
of gathering the cost data is consistent, understanding additional factors is often subject to
methodology.

4.1 Customer Damage Function Estimation

For the small-medium commercial and industrial database a similar set of procedures and
analyses were conducted as those applied to the large commercial and industrial database. As
with the large C&I database, a Tobit regression model was used to estimate the relative effects of
various independent variables rather than normal OLS regression. The same trunc